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ABSTRACT
Recently, edge-based virtual desktop infrastructure (EdgeVDI), which

brings the power of virtualized desktop infrastructure to cloudlets

closer to users, has been considered as an attractive solution for

WAN mobility. However, ransomware and wiper malware are be-

coming more and more prevalent, which can impose serious cyber-

security threats to EdgeVDI users. Existing tamper-resistant solu-

tions cannot deal with cloudlet failures. In this paper, we propose

Rocky, the first distributed replicated block device for EdgeVDI that

can recover from tampering attacks and failures. The key enabler

is replicating to store a consistent write sequence across cloudlets

as an append-only immutable mutation history. In addition, Rocky

uses a replication broker to allow heterogenous cloudlets to con-

trol replication rates at their pace and reduces both disk space and

network bandwidth consumption by coalescing writes for both

uplink and downlink. To show the feasibility of Rocky, we imple-

mented Rocky in Java. The experimental results show that Rocky’s

write and read throughputs are similar to those of a baseline device

with 8.4% and 11.9% additional overheads, respectively. In addition,

we could reduce repeated writes by 88.5% and 100% for editing

presentation slides and a photo, respectively.
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1 INTRODUCTION
Having access to the same desktop environment from any device

and any location has long been an ideal goal of personal computing
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users. Thus, virtualized desktop infrastructure (VDI) was proposed

as an appealing solution that allows users to accomplish that dream.

With VDI, a desktop environment is encapsulated by a virtual

machine (VM) which runs on a remote server within a local area

network (LAN), and its user connects to the VM via remote desktop

protocol (RDP) from his or her personal computing device as a thin

client. Indeed, there already exist many commercial VDI solutions

such as VMWare Horizon, Citrix Virtual Apps and Desktops and

Microsoft Azure Virtual Desktop. According to the report from Fior

Markets, the VDI market size is expected to reach 38.41 billion US

Dollars by 2027 [29]. However, existing VDI solutions are limited

for users who need to access their VDI services over the wide-area

network (WAN) because of long network latency.

Meanwhile, two newly emerging technologies, 5G and edge com-

puting can shed some light on this problem. It is widely known and

expected that, along with 5G network connection, cloudlets [26],

defined as server-class computers (Tier-2) sitting between user

devices (Tier-3) and the cloud (Tier-1), will significantly reduce

the network latency for user devices to use cloud services. Thus,

EdgeVDI has been proposed to provide VDI for users who need

legacy applications and WAN-mobility by running and migrating

VMs across cloudlets near users [33].

Nevertheless, EdgeVDI can be an attractive target for adversaries

attempting to compromise the desktop environment with malware.

These days, ransomware is one of the most frequently mentioned

high-profile malware because it can be directly converted into a sig-

nificant financial gain via ransoms. EdgeVDI remains as vulnerable

as personal computers as vulnerabilities in RDP, legacy applications,

or OS can be exploited in the same way. DarkSide, a criminal hacker

group behind the Colonial Pipeline attack, compromised contrac-

tor’s accounts and gain unauthorized access to the VDI [12, 37]

to gain a foothold. In addition, ransomware may be embedded in

a virtual machine image file by attackers to bypass endpoint de-

tection mechanisms [40]. Although logging off the session may

rollback the system image and remove the malware automatically,

attackers may have plenty of time to encrypt or delete user data

before logging off once they break into the desktop environment.

Many real-world incidents occurred where the victims of ran-

somware attacks were obliged to pay ransom to the attackers. Re-

cently, Ukrainian police arrested six people behind the Clop ran-

somware attacks, and their attacks cost universities about 500 mil-

lion US dollars for the past two years [16]. Last year, the cost due

to ransomware incidents between the second half of 2019 and the

first half of 2020 was estimated to be over 1 billion US dollars at the

minimum [35]. Therefore, it becomes a challenging issue to prevent

ransomware attacks.
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Several researchers have built various tamper-resistant storage

systems to protect user data against ransomware [3, 19, 45]. How-

ever, those solutions all require modification on hardware architec-

ture or need a special hardware device. Many previous studies have

attempted to design ransomware detection methods [2, 22]. This

line of works has mainly focused on quickly detecting ransomware

activity, trying to reduce the damage done by the attacker but not

on recovering data being tampered with or lost. More crucially,

existing solutions do not work when a cloudlet on which the VM

runs fails. For instance, if a natural disaster like fire destroys a

cloudlet infrastructure, those systems protecting user data against

ransomware become ineffective to prevent data loss. There can be

human errors or component failures leading to catastrophic and

cascading failures in a data center [1].

In this paper, we present Rocky, the first distributed replicated

block device for tamper and failure-resistant EdgeVDI. It provides

security and reliability guarantees related to data availability with-

out requiring any special hardware. First, it can restore the block

device back to the state before data is tampered with by performing

ransomware or wiper malware attacks. Second, it can recover the

coherent block device even if failures lead to the unavailability

of one or more cloudlet infrastructures. The key enabler of those

guarantees is carefully managing the replication of block devices

on distributed cloudlets.

Our key observation is that replicating a consistent totally-ordered
sequence of writes on distributed cloudlets ensures the tamper and
failure-resistant distributed block devices. We designed Rocky’s repli-

cation protocol based on this observation. Each Rocky runs on a

cloudlet, and only one among the ensemble of replicas becomes

active for its user to run the VM on it. As writes occur and mutate

the state of the block device, Rocky replicates those writes in the

same order to other cloudlets. Also, Rocky keeps the write sequence

as the append-only immutable mutation history. Therefore, replay-

ing the write sequence up to the point before a tampering attack

begins can restore the version of block devices that have not yet

been tampered with. In addition, failures of one or more cloudlets

can be recovered by using replicas to rebuild the block device on a

new cloudlet replacing the unavailable one.

Rocky leverages a special cloudlet called connector-cloudlet as a
loosely coupled and asynchronous replication broker. The consis-

tent totally-ordered write sequence is replicated across cloudlets via

the connector-cloudlet. The connector-cloudlet is a logical compo-

nent and can be backed by any cloudlet or by a cloud. The connector-

cloudlet gives each regular cloudlet the freedom of determining

the replication rate for better resource management as cloudlets

may be heterogeneous because different service providers may

operate them. Consequently, cloudlets may have different capabil-

ities. Moreover, replicating through the broker is more efficient

than broadcasting directly between cloudlets because it conserves

network bandwidth consumption for uploading.

Rocky employs two novel replication-related techniques: (1) pe-
riodic mutation snapshot update and (2) periodic prefetch with snap-
shot merging. For periodic mutation snapshot updates, a Rocky

cloudlet batches a sequence of writes performed for a period and

asynchronously flushes the snapshot of blocks mutated with the

batched writes (“dirty blocks”). Because repeated writes to the same

block are reduced to the latest write to that block for a period,

Rocky can efficiently be used in terms of performance and space.

The periodic mutation snapshot update replicates dirty block

snapshots to the connector-cloudlet from which other cloudlets

can asynchronously fetch them in advance before they become

active (“periodic prefetch”). Because both periodic mutation snap-

shot and periodic prefetch allow configuring their period, it allows

Rocky nodes to determine the replication rate at their own pace

considering their resource utilization status. Periodic prefetch uses

snapshot merging. Rocky nodes fetch the meta-data about dirty

blocks uploaded over the last few periods, reduce multiple muta-

tion snapshots into a single merged mutation snapshot (“snapshot

merging”), and fetch the merged snapshot. Thus, repeated writes

are even further reduced, which consequently saves the cost of

replicating dirty blocks. Rocky keeps multiple versions of blocks so

that it can guarantee tamper and failure resistance against malware

and failures.

Rocky is implemented in 3K lines of code in Java. We evaluated

our prototype by running block I/O workload directly to the block

device. The experimental results show that there were 8.4% and

11.9% additional throughput overheads for writes and reads com-

pared to the raw network block device.We alsomeasured howmany

repeated writes can be reduced through periodic mutation snapshot

updates and mutation merging for our simulated workflow editing

presentation slides and photos. Consequently, we found repeated

writes were reduced 88.5% and 100%, respectively. In addition, we

provide the proof that Rocky can restore coherent block device in

attack scenarios and that it can recover from failures with minimal

data loss.

We make the following novel contributions in this work:

(1) We develop the first tamper-resistant and failure-resistant

block device for EdgeVDI.

(2) We devise a novel replication protocol involving a replication

broker and employing periodic mutation snapshot update

and periodic prefetch with snapshot merging.

(3) We design and implement a prototype distributed replicated

block devices implementing the proposed techniques (https:

//github.com/Kaelus/Rocky).

(4) We evaluate the prototype to show that it is efficient in terms

of performance and storage space.

In Section 2, we describe details of the target environment, threat

model, failure model, and coherence problem. Then, Section 3 dis-

cusses the architecture of Rocky. Subsequently, recovery procedures

are presented in Section 4, and Section 5 shows the evaluation re-

sults of our empirical study with our prototype system. Section 6

compares our work with related works and we conclude in Sec-

tion 7.

2 PROBLEM STATEMENT
2.1 Target Environment
This section describes the target environment for which we de-

signed Rocky. Figure 1 illustrates the high-level view of the target

environment. Each Rocky block device is installed on a cloudlet,

and a VM uses a Rocky block device as a passthrough device. A

Rocky block device receives and processes VM’s block I/O. For

writes, the Rocky block device replicates the VM’s disk writes to
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Figure 1: Target Environment. A user accesses the desktop
environment contained in a VM via RDP. As the user travels
(the green dashed line), the virtual machine follows the user
via live migration (the blue dashed line).

other cloudlets’ Rocky block devices via a connector-cloudlet. A

set of Rocky block devices forms an ensemble and collectively pro-

vides the coherent block device for the VM running on top of it.

There is only one active Rocky block device at any given time for

an ensemble. As the VM migrates following its user, the Rocky

block device of the cloudlet which the VM runs on becomes active,

and the previously active device becomes inactive. Thus, only the

active Rocky block device can handle VM’s block I/O requests and

therefore can serialize writes. Unlike conventional VDI solutions,

Rocky intends to support a user who requires WAN mobility. The

user may bring or use any personal computing device (e.g., desktop,

laptop, etc.) to access their desktop environment anywhere beyond

a single LAN.

Threat Model. We assume a powerful active adversary. An adver-

sary is assumed to be capable of compromising a victim’s thin client

device or the desktop environment contained in a VM on a cloudlet.

The adversary may mount privilege escalation attacks and can com-

promise kernels or perform arbitrary privileged operations. The

attacker’s primary purpose of intrusion is to install malware such

as ransomware or wiper malware that degrades the availability of

user data aiming the financial gain. We assume that the victim’s

VM is installed with anti-malware software that can notify any

suspicious activity before the attacker taking it down. Although

the attacker can be privileged, he or she cannot escape the VM.

That is, we trust cloudlets, and the attacker cannot compromise the

underlying hypervisor or any other cloudlet infrastructure outside

the VM. The connector-cloudlet will not be compromised as it does

not expose any interface for attackers inside the VM to exploit.

Failure Model. In this paper, we assume that cloudlets may suffer

from benign hardware and software failures that are not adversarial

but harmful enough to prevent us from reading or writing disk

blocks. For example, hard disks of cloudlets may fail and, therefore,

servers may crash. The network can also fail due to Ethernet cable

issues or WiFi adapter failures. In addition, software bugs can also

cause catastrophic failures and crash servers of cloudlets. Thus, we

suppose that failed servers may not be recoverable. For example,

a hard disk can be worn out and cannot be booted from. More

Stealth Attack

Intrusion Tampering

Protection RollbackTime Flow

Figure 2: Tampering Attack Problem. The blue bar indicates
thewritesmadewhile there is no attacker in the system. The
orange bar represents the writes made during the stealth
phase of malware. The red bar shows malware’s tampering
writes.

crucially, cloudlets may suffer from irrecoverable service outage

due to disasters such as fire or flood. Because cloudlets are located

more closely to each other than cloud data centers are, we think that

it will be more likely that a natural disaster can break downmultiple

cloudlets at the same time. Thus, we assume multiple cloudlets may

fail simultaneously. Nevertheless, we expect that there will be at

least one correct cloudlet. For example, we suppose at least one

cloudlet is located somewhere the natural disaster did not affect.

We note that Byzantine faults of cloudlets are out of scope.

2.2 Challenges
Each write is applied to a block device by making a corresponding

mutational change to update a data block. For synchronization,

each replicated block device must consistently apply the same set of

writes in the same order. That means there exists a specific sequence

of writes (w0,w1, . . . ,wn−1) and the state of a block device (Sk , for
some k ∈ Z) sequentially changes as those writes in the sequence

are applied.

S0
w0

−−→ S1
w1

−−→ . . .
wn−1
−−−−→ Sn

Tamper Resistance. Data tampering attacks having ransomware

or wiper malware generate a series of destructive writes. Malware’s

activity is divided into two phases: (1) stealth phase and (2) attack

phase. Suppose the malware starts its attack phase to tamper user

data after the last benign write wk−1. Then, the block device is

tampered withwk , . . . ,wn−1. We can recover the block device to

the state before tampering begins by not applyingwk , . . . ,wn−1 but

applyingw0, . . . ,wk−1. Figure 2 illustrates this, aiming to protect

user data by excluding all those tampering writes issued during

the attack phase. Pinpointing the point when the first tampering

attack began is out-of-scope, and we rely on anti-malware software

to find out that point.

Without an append-only immutable mutation history kept se-

curely, naively replicating and applying writes to backups cannot

defend user data against malware. Accordingly, cloud-based file syn-

chronization solutions will replicate tampering writes to each file

out-of-order, and, therefore, those solutions cannot appropriately

restore the coherent block device state that is not tampered with. In

addition, equipping cloudlets with special hardware, such as TEE

supports, a specially customized SSD, or a fancy self-encrypting

drive, can increase the cost unnecessarily. Rocky is designed to
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Cloudlet A
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𝔀1 𝔀2
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𝔀3

𝔀3

𝔀1 𝔀2 𝔀4

Cloudlet C
𝔀1

Coherent

Incoherent

Time Flow

Figure 3: Coherence Problem. Failures can lead to writing
loss (w3), which can make the block devices incoherent.
Therefore, to recover coherent block devices, we need to
remove recent writes such as w4 and apply the contiguous
write sequence, i.e.,w1,w2.

defend against a tampering attack by keeping the append-only im-

mutable mutation history across cloudlets without using special

hardware.

Failure Resistance.When a block device’s state has been changed

by a contiguous write sequence, we say the block device is coherent.
However, if we apply a write sequence that may include some prefix

that is not contiguous, we cannot assure that the block device is

coherent. Maintaining a coherent block device is one of the most

critical properties that block device abstraction should ensure. For

example, when a file system is updated by creating a file in some

directory, writing the content to the file occurs first, and then writ-

ing to the directory occurs next in order to keep the file system

consistent even if a failure unexpectedly occurs. If we applied the

latter write to the block device but not the former write, then we

have a block device that is not coherent.

Although replicating the write sequence to block devices guar-

antees that replicated block devices are synchronized at a coherent

state, it is challenging to know every write sequence in advance

that is going to be generated by applications. Therefore, most exist-

ing solutions let applications generate block I/O and apply them

to one of the replicated block devices first, then asynchronously

replicate the write that happened on one block device to another

block device to let other devices apply the identical write sequences.

Similarly, Rocky’s approach is replicating the sequence of writes

from a Rocky block device on which VM runs to other Rocky block

devices via a connector-cloudlet.

However, if failures occur, a coherence problem can occur as

the example illustrated in Figure 3. In this example, Rocky on the

cloudlet A wrotew1,w2,w3 which were replicated to the connector-

cloudlet on time. However, if cloudlet A crashed due to hard disk

failure and the connector-cloudlet became unavailable due to a

service outage. Meanwhile, the user traveled and used the cloudlet

B performingw4. Cloudlet B replicatedw1,w2, but failed to replicate

w3 due to the connector-cloudlet’s service outage. Cloudlet C has

been even slower and replicated only w1. Here, cloudlet B does

not have a coherent block device because it does not applyw3 but

applyw4 to its block device. Meanwhile, cloudlet C is coherent but

stale, as it only appliesw1. We can restore the latest coherent block

device by replayingw1,w2 but notw4.

Virtual 
Machine

Rocky Block 
Device

Rocky 
Controller

Connector-
Cloudlet Rocky 

Storage

Kernel
User

Other 
CloudletsOther 
Cloudlets

Rocky 
Cloudlets

Rocky Cloudlet

Rocky Endpoint

Figure 4: Rocky Cloudlet Architecture. Each cloudlet sup-
porting EdgeVDI is installed with Rocky (components col-
ored in blue) and a VM can run on it. The connector-cloudlet
mediates replication between Rocky cloudlets.

Rocky is designed to provide a function for users to get the latest

coherent block device restored only with a given set of correct

Rocky block devices.

Note that the problem described in Figure 3 can occur even if

we say that w3 was not a benign write lost due to a failure but

a tampering write corrupting some data block. Essentially, both

tampering attacks and failures cause the situation where we need

to discard all subsequent writes after the write either tampered or

lost.

3 ROCKY ARCHITECTURE
3.1 Overview
Rocky is a replicated distributed block device to enhance EdgeVDI’s

security and reliability against malware attacks inside a VM and var-

ious failures of cloudlet infrastructures. To that end, Rocky enables

reconstructing a coherent block device that is not tampered.

Rocky Cloudlet. Each Rocky cloudlet maintains Rocky endpoints.
Each Rocky endpoint consists of a Rocky block device (RDB), a Rocky
controller (RC) and a Rocky storage (RS) as illustrated in Figure 4.

Each Rocky endpoint of the Rocky cloudlet stores the replica of a

VM image containing a user’s desktop environment. An ensemble

of Rocky endpoints keep those replicas across cloudlets in sync via

Rocky’s replication protocol. There exists only one Rocky endpoint

for an ensemble that can run the user’s VM. Other endpoints in the

ensemble are periodically replicating new disk writes generated by

the VM.

I/O Handling. RDB exports a device file for a VM to run on top by

using it as a passthrough device. The VM sends block I/O requests

to RDB. Then, RDB redirects it to RC. Each block I/O request is

made to either read or write fixed-size disk blocks. Each disk block

is associated with a unique integer type identifier (block ID). Thus,
each block I/O request must specify which disk block it wants to

read or write. With the block ID requested, RC looks up meta-data

indicating whether the blocks are located locally or remotely. Then,

RC forwards requests to either RS or the connector-cloudlet. RS or

the connector-cloudlet handles requests and returns a response. RC

returns the response to RDB which in turn relays it to the VM.
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Figure 5: Rocky Storage and Connector-Cloudlet Architec-
ture. Meta-data and block snapshots are stored for tamper
and failure resistance. (RC which actually manages commu-
nication between cloudlets is not shown.)

Write Serialization. An ensemble of Rocky endpoints must collec-

tively provide a logically single coherent block device. To that end,

writes must be serialized. Rocky requires an endpoint to obtain an

exclusive ownership from the ensemble. The endpoint with the own-

ership is the only one that can run a VM and, therefore, can serialize

VM’s block writes into a consecutive, consistent, totally-ordered

write sequence that needs to be replicated to all other endpoints

to maintain coherence of a block device. As a user moves, we need

to migrate user’s VM across cloudlets. To transfer the ownership

for the VM between cloudlets, we devised the ownership-transfer
protocol, which we will explain in more detail below. We define

the Rocky endpoint with the exclusive ownership as owner and all

other endpoints as non-owner.

Replication Protocol. Rocky owner batches writes. Then, the

owner periodically flushes writes to the connector-cloudlet. The

connector-cloudlet stores the write sequence as the immutable

mutation history. From the connector-cloudlet, non-owners period-

ically retrieves new writes in the sequence they have not yet repli-

cated. Therefore, write sequence is asynchronously and periodically

streamed by the owner to non-owners via the connector-cloudlet.

In short, Rocky’s replication protocol is publish-subscribe pattern

where the owner publishes new writes, the connector-cloudlet

performs the broker role and non-owners subscribes to any new

writes published by the owner. Because the owner uploads and non-

owners download the streamed write sequence via the connetor-

cloudlet, they can adjust the replication rate at their will depending

on their own resource utilization status.

Storage Architecture. Figure 5 shows the architecture of Rocky
storage and connector-cloudlet (hereafter, “cloud storage”). Rocky

storage contains the raw block store (RBS), version map, endpoint
block snapshot store (EBSS) and dirty/presence/epoch bitmaps. Cloud
storage is used in a way that it contains epoch bitmaps and cloud
block snapshot store (CBSS). We will explain how each component

contributes to Rocky’s replication protocol for tamper and failure

resistance in more details in the following sections.

3.2 Presence/Dirty Bitmaps
For block I/O handling, RC uses two types of bitmaps: a presence
bitmap and a dirty bitmap. The presence bitmap is used to indicate

the freshness of blocks in Rocky storage. If a n-th bit of the presence
bitmap is set to 1, then it means the Rocky endpoint has the up-

to-date n-th block in Rocky storage. However, if the bit is 0, then

it means the copy of the block in Rocky storage is stale. Thus, the

presence bitmap directs whether the requested block is stored in its

local Rocky storage or should be fetched from cloud storage. The

dirty bitmap is mainly used by the owner to record which blocks

have been written (“dirtied”) in Rocky storage but has not yet been

replicated to cloud storage. Similar to the presence bitmap, if the

n-th bit of the dirty bitmap is set to 1, then it means the n-th block

has been written and therefore is a dirty block.

RC manages its presence bitmap and dirty bitmap to read the

latest blocks and replicates writes to other Rocky endpoints. When

RC runs on the owner, it accordingly sets or resets presence and

dirty bitmap for each incoming block I/O. For an incoming read

request, RC looks up the presence bitmap to determine if it can

serve a block from Rocky storage. If so, RC reads the block from

RBS. Otherwise, RC should get the block from cloud storage. After

getting the block from cloud storage, RC stores the block in RBS.

Then, RC sets the corresponding bit in the presence bitmap to 1. For

an incoming write request, RC directly writes to RBS after setting

the corresponding bit in the dirty bitmap. RC does not read a block

for a write request because the block will be overwritten by the

write operation. RC sends the dirty bitmap along with writes to

the cloud storage to notify other non-owner endpoints about new

writes. Then, the corresponding indexes of the dirty bitmap are reset

after flushing those updates to cloud storage. Meanwhile, when

RC runs on a non-owner, it resets bits in the presence bitmap as it

receives the meta-data about new writes from the cloud storage.

3.3 Periodic Mutation Snapshot Update
To ensure a coherent block device, Rocky replicates a contiguous

write sequence across distributed Rocky endpoints. However, if we

replicate every write, resource consumption is wastefully increased

by unnecessarily sending blocks that are going to be overwritten by

new writes. To solve this issue, Rocky hoards writes and sends only

the latest version. More specifically, Rocky periodically updates

cloud storage with the snapshot of dirty blocks at the end of each

period. Rocky allows the owner to adjust the period of update,

called epoch. Therefore, Rocky sequentially sends each fragment of

a write sequence at the end of each epoch. For example, suppose

we have a long sequence of writes,W :

w11,w12, . . . ,w1n ,w21,w22, . . . ,w2m

With this, the state of the block device mutates from its initial state

S0 to Sn+m :

S0
w11

−−−→ S1
w12

−−−→ . . .
w1n
−−−→ Sn

w21

−−−→ Sn+1
w22

−−−→ . . .
w2m
−−−−→ Sn+m

, or simply

S0
W
−−→ Sn+m

SupposeW is fragmented into two epochs, which can be var-

ied depending on the configuration. The first epoch sends a write

sequence fragment,W1:

w11,w12, . . . ,w1n
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Figure 6: PeriodicMutation Snapshot Update. The RCwrites
the snapshot of dirty blocks to EBSS and then replicates it
to CBSS for each epoch. Dirty bitmaps for epochs are also
replicated to the cloud as epoch bitmaps.

The other epoch sends another write sequence fragment,W2:

w21,w22, . . . ,w2m

Thus, the state mutation can be seen as:

S0
W1

−−→ Sn
W2

−−→ Sn+m

To store old write sequence fragments as an immutable mutation

event for tamper-resistance, Rocky packages each fragment of write

sequence into a mutation snapshot. A mutation snapshot is a collec-

tion of dirty blocks written during an epoch. For example, among a

write sequenceW1, ifw12 andw1n write to the same block whose

block ID is 1, then we reduce them to just w1n as it is the latest

write to the block ID 1 for the epoch. Then, Rocky just replicate

the latest snapshot of the block ID 1 that is the block applied with

w1n at the end of the epoch. By overwriting the block device with

blocks packaged in mutation snapshots, we can mutate the state

of the block as if a corresponding write sequence is applied to the

block device. Suppose that the mutation snapshot of the first epoch,

M1 and that of the second epoch, M2. Then, applying M1 to the

block device with the initial state S0, we can mutate the state of the

block to Sn , and so on, as if we have appliedW1 andW2:

S0
M1

−−→ Sn
M2

−−→ Sn+m

This technique is used by a procedure called Periodic Mutation
Snapshot Update (PMSUP) which Figure 6 depicts. PMSUP works

as follow: (1) for dirty blocks referring to the dirty bitmap, RC

first needs to translate the dirty block’s ID to a key that is the

combination of the current epoch appended by the corresponding

block ID delimited by a colon; (2) RC sends those dirty blocks to

EBSS and CBSS as values to those translated keys; (3) RC writes its

dirty bitmap to the cloud storage service by writing that bitmap to

the key <Epoch>-bitmap where the <Epoch> is the current epoch

during which those changes occurred—the dirty bitmap uploaded

to the cloud storage service for each epoch is simply called epoch
bitmap; (4) RC resets the corresponding bits in the dirty bitmap for

those dirty blocks.

Epoch is essentially a version for each block. It indicates when

the block was taken as a block snapshot and made “public” to others

by writing them to the cloud. This is why Rocky indexes each block

in EBSS or CBSS by the combination of epoch and block ID. On an
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Figure 7: Periodic Prefetch. Endpoint A is the owner generat-
ing a sequence of mutation snapshotsM1,M2 andM3. Other
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for the corresponding block.

incoming read request, RC may need to fetch blocks from CBSS but

need to know which version of blocks it needs to request. To that

end, Rocky endpoint maintains version map consisting of a map

between block ID and the latest version (i.e., epoch) for that. When

RC periodically fetches epoch bitmaps, it updates its version map

to reflect new writes made since the last period.

3.4 Periodic Prefetch and Snapshot Merging
Non-owner’s RC periodically gets new block snapshots before be-

coming the owner (periodic prefetch) to minimize the overhead

of getting blocks from the cloud storage on-demand when it be-

comes the new owner. To begin, RC gets epoch bitmaps from cloud

storage—those epoch bitmaps should be ones newly uploaded by

the owner. Once epoch bitmaps are downloaded, RC calculates

what version of block snapshots it needs to get to not download

block snapshots overwritten by the latest one. For example, suppose

mutation updatesM1 andM2 were made by the owner endpoint A

since the endpoint B’s last periodic prefetch. The state of the raw

block device on endpoint A has been changed:

S0
M1

−−→ Sn
M2

−−→ Sn+m

If some block snapshots inM1 are overwritten by block snapshots

inM2, it is wasteful to download those block snapshots inM1 that

are overwritten byM2’s. We devised snapshot merging technique

to solve this issue. To construct the merged mutation snapshot, RC

picks the latest snapshot of each block from mutation snapshots. In

this way, RC gets the “merged” mutation snapshot consisting of the

latest block snapshots for all dirty blocks needed to be replicated.

Figure 7 shows how snapshot merging works with an example

scenario. If endpoint B calculates the mutation snapshot,M1 +M2,

then by applying M1 +M2 endpoint B can sync with endpoint A

more efficiently than downloading them separately:

S0
M1+M2

−−−−−−→ Sn+m

Also, note how each endpoint may vary the rate of periodic prefetch

and the resulting mutation snapshot becomes different based on

that rate. Merged snapshots for endpoints B, C and D areM1 +M2,

M1 +M2 +M3 andM2 +M3, respectively.
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The periodic prefetch procedure (PPP) is as follow: (1) RC begins

with prefetching by downloading all epoch bitmaps uploaded by

the owner since the last prefetch; (2) RC reflects them into its

presence bitmap by resetting bits in the presence bitmap if the

corresponding bit is set in at least one of the epoch bitmaps; (3) RC

starts getting blocks from the cloud storage; (4) newly retrieved

blocks are written to RBS and EBSS; (5) RC updates the version map

accordingly by referring to epoch bitmaps and sets the presence

bitmap accordingly.

3.5 Ownership Transfer
For coherence, we allow only one owner at any given time. To con-

duct the ownership-transfer protocol, Rocky endpoints use cloud

storage for the coordination. The RC allocates the key owner to

indicate both the existence of the owner. If the key does not exist,

no owner is currently active. Therefore, the RC of the non-owner

can become a new owner simply by creating the key. However,

if the key exists, there exists an active owner currently. Then, to

demand the ownership transfer, the RC sends a signalling message

to the current owner via a cloud messaging service. After that, RC

waits until the key owner gets deleted by the current owner. If RC

waits too long, it times out and sends a notification message to its

user via screen, email or SMS.

Upon the arrival of the ownership-transfer request, the current

owner performs: (1) stops accepting any more block I/O during the

ownership transfer, (2) flushes all writes to raw block storage, (3)

performs the last periodic mutation snapshot update (4) deletes the

key owner on the cloud, and (5) sends a signalling message to the

endpoint requesting the ownership to notify the completion of the

ownership relinquishment. Subsequently, RC requesting the own-

ership transfer receives the signalling message and finally become

a new owner by creating the key owner with its own endpoint ID.

If the owner waits for the key owner to change but time out, then

it sends a notification message to its user. Lastly, the new owner

downloads all epoch bitmaps that the owner did not see, creates a

new dirty bitmap, and by referring to epoch bitmaps, resets bits in

the presence of bitmaps and updates the version map.

3.6 Scheduled Checkpoint
Rocky can perform a old block snapshots removal via scheduled

checkpoints. During the scheduled checkpointing, the owner should

stop user’s VM, read and write every block, and flush writes for

the epoch called checkpoint epoch, ec . Then, endpoints finish with

prefetching. Subsequently, endpoints confirm that an anti-malware

and failure detector that there has been no tampering attack and

no cloudlet failure. After that, endpoints and the cloud storage

can clean up their old epoch bitmaps and old block snapshots in

EBSS/CBSS added prior to ec except for those for last checkpoint
epochs. Each checkpoint epoch’s bitmap will be marked as a sched-

uled checkpoint so that it does not get garbage-collected during the

future scheduled checkpointing. The period of scheduled check-

points can be determined based on user’s policy on storage space

utilization.

4 RECOVERY PROCEDURES
Tampering attacks and cloudlet failures both result in degrading

data availability. Once data gets corrupted by malware’s tampering

attacks, users cannot access their data. If cloudlet failures occurred,

user data on failed cloudlets cannot be accessed. If the failure is

permanent like hard disks destroyed by natural disasters, then data

may not be recovered forever. Under our threat and failure models,

there are three possible scenarios of suffering from tampering at-

tacks and cloudlet failures: (1) tampering attacks with no failure, (2)

failures but no tampering attack and (3) tampering attacks and fail-

ures. Rocky’s recovery procedures can deal with those situations.

We rely on the assumption that an conventional anti-malware

and a failure detector are installed in-place, properly configured

and started running already. There exists anti-malware that can

report tampering attacks after seeing some data gets tampered

by malware [2]. We suppose such an anti-malware can correctly

pinpoint and notify the specific epoch when tampering attacks

began. Additionally, we expect to see an additional component that

periodically pinging Rocky endpoints with a heartbeat message to

detect failures. Thus, we suppose there will be notification from

either the anti-malware or a failure detector regarding tampering

attacks or cloudlet failures. They broadcast to Rocky endpoints.

Once Rocky endpoints receive notification, they immediately stops

block I/O processing, periodic updating and prefetching. Then,

Rocky endpoints start running the recovery procedure accordingly.

4.1 Tampering Attack Recovery
Rocky runs tampering attack recovery procedure when an anti-

malware sends the notification to Rocky endpoints. When the noti-

fication from a anti-malware is received by a Rocky endpoint, the

endpoint retrieves the epoch ea specified by the anti-malware as

the epoch when tampering attacks started. Rocky endpoint updates

their data structures, that are epoch variable for the last epoch ep it

finished with prefetch for, its version map and its dirty and presence

bitmaps. More specifically, each endpoint starts with comparing

ep with ea . If ea <= ep , then the endpoint will set its ep := ea − 1.

Also, they download epoch bitmaps from the cloud storage, and also

update their version map using epoch bitmaps updated up until,

ea − 1. In addition, for the case ea <= ep , the endpoint sets its pres-
ence bitmap to one for all indices. Additionally, the owner endpoint

should flush existing dirty block snapshots and reset bits in its dirty

bitmap for those batched dirty block snapshots. For a connector-

cloudlet, Rocky discards epoch bitmaps that are for epochs greater

than ea − 1. Then, Rocky can continue operating without data be-

ing tampered as long as the anti-malware was accurate about the

beginning time of tampering attacks.

4.2 Tamper-Resistant Failure Recovery
Rocky triggers failure recovery procedure when a failure detector

notifies Rocky endpoints about the failures of cloudlets. Rocky addi-

tionally consider tampering attack recovery as well. If a tampering

attack was mounted, an anti-malware should notify with the epoch,

ea , when the attack began. If a cloud does not fail, but endpoints

are failed, necessary data is all contained on the cloud storage in

its epoch bitmaps and CBSS. The procedure is trivial as follows: (1)

replace failed component with new ones, (2) remove every bitmap
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Figure 8: Failure Recovery. Endpoint A generates mutation snapshotsM1 andM2 although it may temporarily fail during the
upload. A user travels to endpoint B to generate M3, travels to endpoint C to generate M4, and travels back to endpoint B to
generate M5. Meanwhile, endpoint C fails permanently after downloading M1 and generating M4 due to a hardware problem
and then cloud storage A fails due to a devastating failure resulting in data loss. The user switches to cloud storage B and
triggers Rocky failure recovery procedure. Endpoint A sends cloud storage B its snapshot M1 + M2, which is the most up-to-
date among endpoints A and B. Then, endpoint B sends M3 but discard M5 because M4 is completely lost with endpoint C
and cloud storage A’s failures (note that M4 may have been the beginning of a tampering attack). Endpoint C catches up by
replicating the merged snapshotM1 +M2 +M3 after the failure recovery.

added after ea − 1 from the cloud epoch bitmaps. (3) let new end-

points reconstruct their version map, endpoint epoch bitmaps, RBS,

and EBSS using epoch bitmaps and CBSS on the cloud storage by

having new endpoints perform prefetch from the beginning.

When the cloud storage fails, Rocky recovers using data stored on

endpoints after removing tampering effects if attacks were mounted.

Here, some of endpoints may be failed but Rocky’s recovery proce-

dure below can recover the block device state with minimal data

loss with those endpoints still not failed. One of endpoints becomes

a coordinator which can be specified by the user and known to

every endpoints in advance. The user may specify the priority for

each endpoint to become a coordinator in case some endpoints fail

and cannot become the coordinator. Then, the coordinator learns

from the failure detector about endpoints not failed which forms a

recovery committee.
Then, the coordinator starts running the initialization procedure

(IP): (1) every endpoint receives ea from an anti-malware; (2) every

endpoint uploads the epoch of their last endpoint epoch bitmap, e1,
that is e1 < ea ; (2) every endpoint uploads the epoch for which they

finished with prefetching, e2, that is e2 < ea ; (3) the coordinator
reads all e1’s and e2’s; (4) the coordinator designates the epoch

leader l1, which is the endpoint uploaded the largest e1; (5) the

coordinator designates the prefetch leader l2, which is the endpoint

uploaded the largest e2.
Subsequently, the following initial recovery procedure (IRP)

runs to recover epoch bitmaps and CBSS that is the most coherent

one prior to ea : (1) l1 uploads endpoint epoch bitmaps to the cloud

storage as a new cloud epoch bitmaps; (2) l2 uploads EBSS to the

cloud storage as a new CBSS; (3) the coordinator downloads epoch

bitmaps from the cloud storage and scans epoch bitmaps starting

at e2 and sequentially add each subsequent epoch (greater than the

previous epoch only by one) into the list L if there is an endpoint

in the recovery committee which wrote the epoch bitmap for; (4)

stop as soon as we found the epoch for which there is no owner

endpoint in the recovery committee.

Finally, we further forward recovery (FRP) to minimize data

loss by having endpoints to write more recent mutations which

may exist across endpoints’ EBSS: (1) the coordinator uploads L
and deletes epoch bitmaps for epochs newer than those included

in L; then notifies all other endpoints via the messaging service; (2)

endpoints download L; (3) endpoints upload dirty blocks for the

epoch in L for which they were the owner; (4) endpoints notify the

coordinator once they are done; (5) once the coordinator is notified

by all endpoints in the recovery committee, it notifies all others

about the completion of the recovery procedure.
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Figure 9: Revisiting the example of the coherence problem,
which can be solved by utilizing mutation snapshots. Each
write is divided into a mutation snapshot, and a contiguous
sequence of mutation snapshots is needed to recover the co-
herent block device. Endpoint C and cloud storage B recover
the coherent block device by applyingM1, asM2 gets lost and
M3 is not contiguous.M3 must be discarded on endpoint B.

Figure 8 gives an example that illustrates the high-level of Rocky’s

failure recovery procedure. Suppose that endpoint C and cloud stor-

age A create a hole in the sequence of mutation snapshots because

the mutation M4 is lost permanently (either due to a tampering

attack or a failure). In this case,M5 must be discarded on endpoint

B during the failure recovery to recover the coherent block de-

vice that has not been tampered. Consequently, the coherent block

device state we can recover is the one with a mutation snapshot

M1 +M2 from endpoint A andM3 from endpoint B applied sequen-

tially. Once cloud storage B gets the mutation snapshots uploaded,

endpoint C can replicate the merged snapshot M1 + M2 + M3 at

once.

Any component of Rocky can be tampered or failed at any point

in time and unexpectedly become unavailable. If a Rocky endpoint

temporarily fails due to network connection failures for a while or

rebooting the machine, it can simply resume the remaining work

it was doing before the failure. Because a Rocky endpoint keeps

prefetching blocks for each mutation snapshot sequentially, any

Rocky endpoints contain a coherence snapshot of the block device.

Figure 9 illustrates how Rocky’s periodic mutation snapshot up-

dates, periodic prefetch, and snapshot merging features can solve

the coherence problem described in Section 2. The key idea is that

each write sequence can be divided into multiple chunks of muta-

tion snapshots. Then, endpoints can periodically merge mutation

snapshots and prefetch to mutate endpoints’ block storage states

coherently. On the recovery, we start with finding the snapshot

that is the most up-to-date among available endpoints. We then

make the block storage state fast-forwarded by applying subsequent

mutation snapshots sequentially until we find any discontinuity.

5 EVALUATION
5.1 Prototype Implementation
Rocky is implemented in about 3K lines of Java code (https://github.

com/Kaelus/Rocky). It is based on a variant of NBD implementations

backed by FoundationDB (https://github.com/spullara/nbd.git). The
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Figure 10: Read/Write Throughput Comparison between
Rocky and NBD.

NBD kernel module is equivalent to Rocky block device, which

passes block I/O to the user-level Rocky controller, which is the

main engine of the system implementing periodic mutation snap-

shot updates and periodic prefetch and snapshot merging. For end-

point epoch bitmaps, version map, endpoint block snapshot store,

Rocky uses LevelDB. For the cloud storage, Rocky uses the AWS Dy-

namoDB service, located in Seoul, Republic of Korea (ap-northeast-

2).

5.2 Throughput Measurement
Figure 10 demonstrates the benefit of prefetching. All workloads for

our experiments run on a machine equipped with Intel Core2 Quad

CPU where each core runs at 2.83 GHz, 8 GB RAM, and Samsung

SSD 860 EVO 500GB. We ran a workload, writing and reading

2 MB of data to the block device directly using the well-known

‘dd’ utility tool. To remove the buffer cache effect, we flushed all

buffer caches to the disk before running the workload. NBD is the

baseline that does not involve network communication with the

AWS DynamoDB service and Rocky’s implementation.

With Rocky, we varied the percentage of blocks locally present

by setting and resetting bits in the presence bitmap accordingly.

When every block is present locally, there were 8.4% and 11.9%

additional throughput overheads for writes and reads, respectively.

Write performance of Rocky is almost the same as NBD’s all the

time because processing writes in Rocky does not cause fetching

from the cloud storage. However, read performance is affected

dramatically depending on the percentage of blocks locally present.

We found that the major performance bottleneck is fetching from

the remote cloud storage. The performance drops exponentially

as the number of blocks fetched from the cloud storage increases.

Therefore prefetching as many blocks as possible is very important

to reduce perceivable performance degradation.

5.3 Reduction Ratio Measurement
We also measured the benefit of reducing repeated writes to the

same blocks by mutation snapshot and snapshot merging. We sim-

ulated a workflow involving photo editing and presentation slides

updating to see how many repeated blocks could be reduced. The

result of this study is presented in Table 1. Assuming Rocky uploads

a mutation snapshot after running the workflow, we analyzed the
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Table 1: Mutation generated by a workflow of photo editing
and presentation slides creating. We indicate the number of
new ‘WRITES’ generated at each step of the workflow and
the new ‘BLOCKS’ written by those writes.

Metric Copy-P Edit-P Create-S Edit-S
WRITES 8600 48 2096 1040

BLOCKS 8600 0 2056 120

ratio of the number of writes to the number of blocks newly added

to the mutation snapshot as our measurement metric, reduction
ratio, for the entire workflow and each task.

Initially, we started with an empty block device and created a

file system on it by running ‘mkfs.ext4’ on the device. Then, we

mounted the device on a host file system. Subsequently, our work-

flow started with copying a high-resolution photo of size 4.3 MB to

the mount point of the Rocky block device. This phase is labeled as

Copy-P. The photo was then edited using the ‘ImageMagick’ photo

editing application. Editing includes cropping, rotating, adding

frames, drawing a few lines and applying several miscellaneous

special effects, which is labeled as Edit-P.
After that, we created new presentation slides using ‘LibreOffice.’

We inserted a high-resolution photo of size 438.9 KB into the slide.

Then, we added several new slides with randomly typed texts along

with few new shapes added. This step is labeled as Create-S. Lastly,
we did some more editing to the slides by adding more slides with

more texts and shapes, which is represented by Edit-S.
Overall, 11784 writes were generated, while 10776 blocks were

newly included in the mutation snapshot uploaded after executing

the aforementioned workflow. Therefore, the reduction ratio is 8.6%

in total, but the reduction ratio is varied greatly depending on the

type of tasks. For Edit-P, there was the 100% reduction ratio because

even though there were 48 writes, no blocks were newly written

after Copy-P. Also, for Edit-S, we could gain the 88.5% reduction

ratio. Thus, we observe the tendency that tasks updating existing

files may gain significant advantages from mutation snapshot and

snapshot merging. However, we also like to note that tasks creating

a new file are not taking a significant benefit from our techniques,

as those tasks are likely to lead to a multitude of blocks that need to

be newly included in the mutation snapshot. For instance, Copy-P
shows 0% reduction ratio and Create-S shows only 1.9% reduction

ratio.

6 RELATEDWORK
There have been many ransomware detection works [2, 4, 10, 15,

18, 22, 23, 30, 31, 34, 36]. However, those previous works do not

discuss a recovery mechanism. Many works also provide means

to prevent or recover for tamper-resistant storage systems against

malware [8, 19, 24, 26, 39, 44, 45]. Nonetheless, those previous

proposals do not work for replicated block devices but for a single

block device.

Several storage systems placing data on the edge for endpoints

have been studied recently [13, 17, 41]. Nevertheless, those sys-

tems usually mainly provide a key-value store interface and do not

solve the coherency problem. Although these systems can provide

low-latency over a wide-area network over the cloud, they cannot

provide a recoverable coherent block device abstraction in the pres-

ence of failures of for both endpoints and the cloud and cannot

provide tamper-resistance against malware.

A couple of research projects have explored how to build a system

image that can be replicated over a shared storage infrastructure

for endpoints [25, 32]. The Collective has developed their solution

for the enterprise environment where all endpoints are connected

within the enterprise’s private network, so it has not considered

the problems occurred by the shared storage server hosted on the

shared infrastructures like cloudlets. In addition, the Internet Sus-

pend/Resume project performed several empirical studies for real-

izing this idea. Also, ISR project maintainers proposed to use edge

computing for legacy applications via EdgeVDI [33] Nonetheless,

their proposals do not consider security and reliability aspects of

EdgeVDI.

Also, there have been many existing works for securing dis-

tributed file systems in the presence of the untrusted server compo-

nent, such as SUNDR, Sirius, Plutus [14, 21, 27]. However, they can-

not provide availability on the server failure. Hourglass, PDP, POR,

DepSky, and Hail [5–7, 20, 42] are exploring server-side solution

for untrusted cloud either by applying cryptography techniques in

a novel way or by using multiple cloud service providers. However,

they cannot provide block device abstraction and therefore do not

support coherency.

In terms of protecting consistency guarantee, Depot, Sporc, and

Venus [11, 28, 38] are related to protecting data consistency, similar

to Rocky’s coherency guarantee. However, their solutions are not

suitable for edge/fog computing environments and they are not

tamper-resistant solutions against malware. Salus and Windows

Azure [9, 43] ensures a strong consistency guarantee, but they are

not for edge computing but for the enterprise environment.

7 CONCLUSION
As 5G and edge computing technologies are emerging, we will

see the increasing number of applications taking benefits of short

network latency. EdgeVDI has been proposed recently as an appli-

cation that can provide a desktop environment to users needing

legacy applications andWAN-mobility. Among many challenges on

the road, two most significant problems are how to protect against

data tampering malware and failures, affecting data availability. We

propose a distributed replicated block device, Rocky, that enables

tamper and failure resistant EdgeVDI. Rocky stores a totally-ordered

contiguous write sequence as an append-only immutable mutation

history and replicates it across multiple cloudlets. Evaluating our

prototype, we found only about 10% performance overhead is re-

quired to provide a recoverable coherent block device abstraction

along with 88.5% to 100% reduction ratio for repeated writes.
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A CORRECTNESS PROOF
We define a block device to be coherent if and only if there exists a

consistent totally-ordered write sequence transitioned the state of

the block device.

Theorem 1. Under normal circumstances with no failure, Rocky

maintains a coherent block device.

Proof. By contradiction, suppose a Rocky block device, B, is
not coherent after applying a state mutation Mi where 0 < i < n.
Because B is not coherent after applying Mi , Mi should contain

a write sequenceWi that is deviated from aW ′
i contained in M ′

i
such thatW1, . . . ,Wi−1,W

′
i is the consistent totally-ordered write

sequence. Step 2 of PMSUP has oi uploadM
′
i containingW

′
i to its

EBSS and CBSS. There are two possibilities for B to apply mutation

snapshots. First, at Step 4 of PPP, B downloadsM ′
i and applyW ′

i to

its RBS. Second, while B is the owner, B accordingly fetches blocks

in M ′
i from CBSS on demand. By construction, for ei , B always

applies blocks written byW ′
i but never byWi , which contradicts

our assumption. Thus, there is no Rocky block device that is not

coherent. □

Theorem 2. Assuming an anti-malware correctly pinpoints and

notifies with the epoch during which the tampering attack has first

begun, Rocky can recover from tampering attacks by restoring an

coherent block device which is not tampered.

Proof. Let us call a Rocky block device as B which has the initial

state S0. Suppose B’s state changes from Si−1 to Si after applying
the mutation snapshotMi containing writes tampering user data

occurred during the epoch ei . Then, the anti-malware notifies Rocky

endpoints with the epoch ei to indicate when tampering attacks

began. Rocky runs the tampering attack recovery procedure and

rolls back B’s state to become Si−1. By contradiction, suppose Si−1
is tampered. That is, there must exist at least one mutation snapshot

Mt that tampered the block device state from St−1 to St for 0 ≤

t ≤ i − 1. It means that there was an epoch et earlier than ei
that the anti-malware notifies as the first epoch when tampering

attacks began. Therefore, it contradicts to our assumption on the

anti-malware. □

Below, we prove that Rocky can successfully recover from the

cloud storage failures while there is no tampering attack.

Theorem 3. Rocky can recover from failures with a coherent block

device.

Proof. By contradiction, suppose a Rocky block device, B, be-
comes not coherent during the failure recovery right after applying

a mutation snapshotMi . That is,W1, . . . ,Wi−1,Wi applied to B is

not a consistent totally-ordered write sequence. At Step 2 of IRP, l2
uploads EBSS that contains a consistent totally-ordered write se-

quence upto e2 as a newCBSS to the cloud storage.Moreover, at Step

3 of FRP, endpoints upload mutation snapshots which collectively

contain a consistent totally-ordered write sequence from e2+1 to an

arbitrary ex . B downloads the uploaded mutation snapshots so ap-

plies a consistent totally-ordered write sequenceW1, . . . ,Wx where

x ≥ i . Hence, W1, . . . ,Wi−1,Wi must be a prefix of W1, . . . ,Wx .

However, becauseW1, . . . ,Wx is a consistent totally-ordered write

sequence, it contradicts our assumption. □

Also, we prove that Rocky can recover the block device that is

coherent with minimal data loss even if some endpoints failed along

with the cloud storage.

Theorem 4. A recovered Rocky block device is the latest coherent

block device recoverable with the given recovery committee.

Proof. By contradiction, suppose the ex cannot be the maxi-

mum epoch in the longest prefix of epochs starting at e2. However,
Step 3 of IRP ensures that every contiguous subsequent epoch

starting at e2 are in L, contradicting our assumption. □
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